top of page

Causal AI for Personalized Interventions

Using causal AI to optimize and personalize interventions in medicine and public health to make them more cost effective.


  • Bargagli Stoffi, F.J., Tortù, C., Forastiere, L. Heterogeneous Treatment and Spillover Effects under Clustered Network Interference. Annals of Applied Statistics, 19(1), 28-55, 2025.

    [paper]


  • Zorzetto, D., Bargagli Stoffi, F.J., Canale, A., Dominici, F. Confounder-Dependent Bayesian Mixture Model: Characterizing Heterogeneity of Causal Effects in Air Pollution Epidemiology. Biometrics, 80(2), 2024.

    [pdf] [preprint]


  • Bargagli Stoffi, F. J., De Witte, K., Gnecco. G. Heterogeneous Causal Effects with Imperfect Compliance: a Bayesian Machine Learning Approach. Annals of Applied Statistics, 16 (3), 1986-2009, 2022. 

    [paper] Coverage: [R-bloggers post] [YoungStats post]​


  • Zorzetto, D., Canale, A., Mealli, F., Dominici, F., Bargagli Stoffi, F.J., Bayesian Nonparametrics for Principal Statification with Continuous Post-Treatment Variables arXiv preprint arXiv:2302.11656. 

    [preprint]


  • Bargagli Stoffi, F.J., Gnecco, G. Causal Tree with Instrumental Variable: An Extension of the Causal Tree Framework to Irregular Assignment Mechanisms. International Journal of Data Science and Analytics, 9, 315–337, 2020.

    [paper]



Image: “Children of the Sea", Jozef Israels, 1872. Rijksmuseum, Amsterdam, The Netherlands.

CONTACTS

Address:

650 Charles E Young Dr S, Los Angeles, CA, 90095, USA

 

Email:

falco@ucla.edu

​

  • google_scholar
  • Black Twitter Icon
  • Github
  • LinkedIn
  • Research gate

© 2024 By Falco J. Bargagli Stoffi

bottom of page